Newton Leibnitz's Theorem

IMPORTANT

Newton Leibnitz's Theorem: Overview

This topic covers concepts, such as Functional Equation Involving Definite Integral, Special Case of Derivative of a Definite Integral, and Newton Leibnitz Theorem for Definite Integral.

Important Questions on Newton Leibnitz's Theorem

HARD
IMPORTANT

Let fx=1x2-t2dt. Then the real roots of the equation x2-f'x=0 are

HARD
IMPORTANT

If y=1a0xft·sinax-tdt, then find fx

HARD
IMPORTANT

If ϕ x=cosx-0xx-t ϕ tdt. Then find the value of ϕ''x+ϕx.

EASY
IMPORTANT

fx=sinx+0xf't2sint-sin2tdt, then fx is

HARD
IMPORTANT

Let fx=-xxtsinat+bt+cdt, where a,b,c are non-zero real numbers, then limx0fxx is

EASY
IMPORTANT

The value of  limxx3-1x1xln1+t21+etdt is

HARD
IMPORTANT

Let fx=2xdt1+t4 and g be the inverse of f. Then the value of g'0 is

MEDIUM
IMPORTANT

Investigate for maxima & minima for the function, f x , f x = 1 x 2 t - 1 t - 2 3 + 3 t - 1 2 t - 2 2 dt

HARD
IMPORTANT

Let f be a real-valued function defined on the interval (–1, 1) such that   e x f(x)=2+ 0 x t 4 +1 dt,  for all   x(1,1),  and let   f 1  be the inverse function of f. Then   f - 1 2 is equal to:

 

MEDIUM
IMPORTANT

The value of limx01x30xtn(1+t)t4+4dt is

MEDIUM
IMPORTANT

The value of  limx0 1x30xt ln1+tt4+4dt  is:

EASY
IMPORTANT

If fx is differentiable and 0t2xfxdx=25t5, then  f425 equals to

MEDIUM
IMPORTANT

If f(x) is differentiable and 0t2xf(x)dx=25t5, then f425 equals:

MEDIUM
IMPORTANT

Let fx=1x2t2dt.  Then the real roots of the equation x2-f'x=0 are

HARD
IMPORTANT

Let gx=0xftdt, where f is such that 12ft1, for t0,1 and 0ft12, for t1,2. Then g2 satisfies the inequality

HARD
IMPORTANT

If  sinx1t2f(t)dt=1sinx, then f(13)  is:

HARD
IMPORTANT

Let f:0, 1 be the function defined as fx=n if x[1n+1, 1n) where n. Let g:0, 1 be a function such that x2x1-ttdt<gx<2x for all x0, 1. Then limx0fx gx

MEDIUM
IMPORTANT

Let f be a continuous function satisfying 0t2f(x)+x2dx=43t3,t>0 . Then fπ24 is equal to

MEDIUM
IMPORTANT

If 0t2fx+x2dx=43t3, then fx is

HARD
IMPORTANT

Let f be a differentiable function satisfying 0xx-p+1fpdp=x4+x2 x[-2,), then value of -22fx+f'xdx is